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Fig. 2. Monodispersed droplet generator. 

Fig. 3. Relative quantity of droplets 6N/N vs angle of deviation a, 
sr.104; chamber pressure: i) 419 torr; 2) 711; 3) 740, 

experiment. Figure 3 shows the dependence of the relative quantity of droplets 6N/N vs de- 
viation angle ~. For lower pressures in the vacuum chamber these values are not shown, since 
in this case the deviation did not exceed the experimental error. 

NOTATION 

N, quantity of particles studied; ~N, number of particles with identical deviation angle; 
~, angular deviation. 
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STABILITY OF PERIODIC FLOW IN A MICROPOLAR FLUID 

M. A. Brutyan and P. L. Krapivskii UDC 532.51:536 

The stability of unidirectional periodic flow in a micropolar fluid is treated. 
An analytic expression is found for the critical Reynolds number of stability loss. 

Among the non-Newtonian fluids, for whose description one needs additional hydrodynamic 
variables, one of the best known is the so-called micropolar fluid. Along with the classical 
hydrodynamic variables (velocity, pressure, and so on), for macroscopic description of this 
medium one requires three additional variables, interpreted as the components of the angular 
velocity of microrotation ~. 

The equations of a micropolar fluid are substantially more complicated than the Navier- 
Stokes equations. This renders the construction of rigorous solutions, and particularly the 
stability analysis, more difficult. Most of the stability studies of a micropolar fluid 
were carried out numerically (see, for example, the stability studies of Couette [i], Taylor- 
Couette [2], and Benard-Rayleigh [3] flows). It is, therefore, of interest to investigate 
a problem for which one can expect to obtain analytic results in the study of linear and 
weakly linear stability. 

As will be seen in what follows, such an example is unidirectional periodic flow of a 
micropolar fluid, induced by an external force F ~ siny, directed along the x-axis (the so-called 
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Kolmogorv flow). The stability of Kolmogorov flow in a viscous incompressible fluid was 
investigated analytically in [4-6] within the Navier-Stokes equations. Reviews of theoreti- 
cal, numerical, and experimental results are contained in [7, 8]. 

Statement of the Problem. Introduction of Slow Variables. Consider planar flow of a 
micropolar fluid, induced by a massive force F periodic in one of the coordinates. The equa- 
tions of motion are conveniently represented in the form: 

9 [-77-0 (A*) + O(A%0(x, y) *) .J = ( ~ + k )  A2*q-kA*-F(9 ) '  (1) 

~or p lanar  flow the  angular  v e l o c i t y  of m i c r o r o t a t i o n  has a s i n g l e  n o n t r i v i a l  component, 
denoted by o: fi = (0, 0, o) .  

We convert now all variables to dimensionless form. The unperturbed Kolmogorov flow 
= Ua cos (y/a) is used to select the units of length and velocity, i.e., the velocity is 

measured in units of U, and the length - in units of a. We use p for unit density. As a result 
Eqs. (i), (2) acquire the form: 

. . . .  cos/] , (3) Ot O(x, y) R A ~  -~ ~A~--  1 l aq- 2)~ 

r 0 a 0(o, ~) ] I 
1--~-" q- O(x, !/) =--R - [ / zAa-s  (4) 

Be-  Standard notations have been used in Eqs. (1)-(4) for the Laplacian and Jacobian. 
sides, the dimensionless parameters R, X, ~, j, defined by the relations 

9Ua k l = /~ ? J 
R - ~ + k  ' ~ -  ~ + k  ' 1/ ( ~ + k ) a  ~ , i = - - U - ,  (5) 

were introduced in Eqs. (3) and (4). The physical meaning of these parameters is obvious: 
R is the Reynolds number, X is a measure of particle coupling with its surrounding, for X = 0 
Eq. (3) transforms to the Navier-Stokes equations, ~ is a dimensionless "internal" length 
in a micropolar fluid, calculated from the kinetic coefficients, and j is the square of 
another "internal" length, calculated from the microment of inertia. 

k 
It is assumed that the Kolmogorov flow ~=cos 9, o= /zm2kcosy loses stability at some 

critical Reynolds number R,. In the case of low supercriticality, i.e., when R differs 
little from the critical number R,, it is convenient to introduce a small parameter g by the 
rule 

R -t = R~ 1 (1--~z) (6) 

with the following deformation of space-time coordinates 

T=s~l,  X = s x ,  Y = ~ .  (7) 

Arguments for the usefulness of such choice of scales were first formulated in [9-ii], 
as applied to the study of stability of convective flows. As shown by Shivashinsky [6], for 
Kolmogorov flow of a Newtonian fluid the use of scale transformations (6), (7) makes it pos- 
sible to obtain relatively simply the basic results of linear stability theory [4, 5], along 
with new results in weakly linear stability. 

In the new variables the equations of motion (3), (4) are 

0 0 (%~, r -t- 8 a 0 (r  ~) 
ot o (x, 9) o (x, 9) 

'-+[ ( 
[ , 0(7 (} (O', ~) i 1 - -  E2 

-3 

(8) 

(9) 
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In Eqs. (8), (9) and everywhere in the following we use the new variables T, X, Y, which 
are denoted for convenience by the lower-case letters t, x, y, respectively. 

Since the perturbed flow is naturally assumed to be periodic, we integrate (8) and (9) 
over a period. As a result we reach the integral relations: 

2~ 
2a 8 a l,l~y~xxdtj gz l - - g z  az ~ if l _ _ g  2 Oz 2= = - -  q:dg -r 2,, - -  i ~dh', (10a) 

Ot b ~ . 

" 0 0 

which are used in the following to calculate the critical number R,. 

Determination of the Critical Reynolds Number. The solution of the problem is sought 
in the form of asymptotic series in a small parameter: 

Substituting (Ii) into (8), (9), we find in the vanishing approximation: 

i ~z 'j 
a~.o q_ L a'z~176 - 1 cos y, 
c)y~ @2 12 ~- 2;L 

I ~ 82(~~ 2 -L(2%+, --ff~-g2 
Integrating (12a), (12b), 

(11) 

(12a) 

( 1 2 b )  

and taking into account that we seek a periodic solution, we obtain 

~0--cosy~0(x, t), (13a) 

(13b) % ..... cos y. 
l 2 + 2~ 

(10b) are automatically satisfied by the solution The solvability condition of (10a), 

(9) with account of (13) 

(13). 

In the first approximation we find from (8), 

d~q:~ + L 82cq - R ,  a O o  sin y, ( ! 4 a )  
Og'~ Oh, z 8x 

82~ ) ~ ( 2 ~  @ ozLb~ I - =  P , j  )~ 8cP~ sintj. (14b) l z 
Oy z ~ 0112 ] [2 @ 2}~ OX 

Analysis of (14a), (14b) shows that the solution must be sought in the form: 

q:, = - -R ,A~ 0q)o s ing  ~ (D~ (x, l), ( 1 5 a )  
dx 

8(I) o 
ol = - - ~  R,~ aj sin!/. (15b) 

0x 

Substitution of (15) into (14) leads to the following constant values: 

l~-f- 2?~ q- i A1 --  1 @;~2al, al = ( 1 6 )  
( l  2 + 2 z ) ( f  2 + 2 ~  - -  x~) 

The solvability condition of (10a) acquires the following form in the first approximation 

Ox Oy Ox 2 R, Ox 2 j 
(yl dy. ( 1 7 )  

�9 0 

B o t h  t e r m s  i n  ( 1 7 )  v a n i s h  i d e n t i c a l l y  due  t o  ( 1 3 a )  and  ( 1 5 b ) ,  r e s p e c t i v e l y .  The  s e c o n d  
solvability condition 

J a-~-ir~(r~ Ox ?j -~Y-y b f ( h d y = 0  ( 1 8 )  
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is also satisfied automatically, since both integrals in (18) vanish identically at the solu- 
tion (13), (15b). 

In the second approximation we obtain from (8), (9), with account of (13), (15): 

0~,2 + X OZ~ - -R.  O(D, sin ~--- R2,A, [ 0(I)o '~2cosg ' 
Og~ O f  " Ox " \ Ox / 

l 202~20g z --  ~. (2oo_ + ~ + --~x2 ) 0 2 ~ [ ' "  0a(D~ ~ = XR.] [ .  12+ 2 - - -~1  O(I),ox s i n g +  

(19a) 

(0(1)o/2 Aa ) Ozq~OsinZg]. 
+ R.a~ \ Ox ) cosy + R. (al- 12 + 2)~ . Ox ~ 

It is seen from (19) that the periodic solution must be sought in the form: 

= ~162  ing-- GA2 ( 0r 
" Ox k Ox ] 

O(Ih s i n g +  R.a~ O(Do \ 
O'.~--=--X R,a I OX ( ~ X )  

cos g --- R~B.2 02~D~ cos 2g + r  (x, t), 
Ox z 

(19b) 

(20a) 

cosy + R,b.. 020~ ] OZO~ " cos2g + c o ~  (20b) 
Ox z J " Ox 2 

Substituting (20) into (19), we arrive at a system of simple linear equations in the unknowns 
Af, af, Bf, bf, c 2. Solving this system, we finally find: 

A 2 = A i + ~,2a2, a 2 = (A 1 + j a l ) ( /2  + 2~. - -  ~ 2 ) - ]  

B2 = ~?b2t4, b~ = -~- ] , 72 + 2L al, (4/~ + 2~,-- ),~)-1, 

1 1 . ,> " A ~  

c.~ - + -~--SR~ ( 12 a ,  2 , + 2,! ) ' 

The solvability condition (10a) is in the second approximation 

o o , ,  O r dg - .[ ,oeg + .[  o)dg 
R * - ~ x  0g Ox z Ox2 0x2 Ox~ o Ox2 o 

(21a) 

(21b) 

(21c) 

and, following elementary transformations, leads to the required expression for the critical 
Reynolds number of stability loss: 

/ 2--),. (22) 

The second solvability condition of (10b) 

0 2 ( (  0~1 0~0 t 022~ 2~ 
�9 Og ) Ox2 o o 

is transformed into an identity following substitution of the results obtained (13), (15), 
(20b), (21b), (21c). 

Thus, the critical number R, is determined by Eq. (22) and depends on the three dimen- 
sionless similarity parameters k, ~, j. The equation obtained is, as well as we know, a 
unique analytic result in stability theory of a macropolar fluid. In the case of a New- 
tonian fluid X = 0, and Eq. (22) transforms to the well-known Meshalkin-Sinai equation R, = 
d~ [ 4 ] ,  

Analysis of (22) leads to the following conclusion: with increasing X = kl(~ + k) from 
0 to i and fixed values of the remaining similarity parameters s and j there is a monotonic 
decrease of R,, i.e., the flow stability is reduced. This result is not in agreement with 
results of other authors (see, for example, [2]), observing stability enhancement of a micro- 
polar fluid in comparison with a Newtonian one. This discrepancy is basically an artefact 
of our determination of the Reynolds number (5) from the kinetic coefficient D + k. Using 

516 



the more customary definition Re = pUa/~ [in this case the equations of motion (3), (4) and 
all subsequently obtained results are more awkward, therefore it seemed advisable to restore 
the definition (5)], then with account of the relation Re = R(I - X) -I the behavior of Re... = 
Re,(X) with increasing X and fixed ~ and j values is almost opposite for all s and j values. 
This is not directly seen from expression (22), but in real situations, when both internal 
lengths ~ and /~ are very small, (22) transforms to the asymptotic equation 

] - - - -  

2 1 •  1 ? J + O ( l L  l~/, /~! 

which expresses smoothly the fact of stability enhancement with increasing "extent of micro- 
polarity" X. 

We note that for some values of the parameters s and j the dependence Re, = Re,(X) be- 
comes nonmonotonic, and the flow stability of the microplar fluid can be reduced. In the 
region of small internal lengths ~ ~ i, j ~ 1 this is possible when j ~ ~2. In fact, when 
the extent of micropolarity is of order j, with account of (16) we obtain from (22) 

( 3 )'/2( j §  @ J ~ "-~/2 

\ 

whence it is seen that in the region 0 < X < j/2 there indeed occurs a stability reduction, 
Re, < ~. We note, however, two facts. Firstly, the maximum Re~. reduction in comparison 
with s is a small quantity O(j). Secondly, the internal length"/~ is of the order of a 
typical size of a microstructure in the micropolar fluid, while at the same time the other 
internal length ~, calculated from the kinetic coefficients, is usually substantially larger 
than ~. In many studies, starting with the well known [12], the convective terms in the 
equation for the angular velocity of microrotation have been generally discarded, i.e., it 
was assumed that j = 0. Detailed analysis of (22) for ~ ~v~ shows that in this region the 
behavior of Re,(X) is standard, and stability is enhanced with increasing X. On the whole, 
the nonmonotonic behavior of micropolar fluid characteristics reflects the complex internal 
structure of this medium. In other problems complex effects were observed in a recent study 
[13]. 

We now discuss briefly the general scheme of further consideration. The procedure de- 
scribed of constructing asymptotic expansions can be extended further. In the third approxi- 
mation we again obtain relation (22) as an asymptotic solvability condition from the integral 
relations (i0). Therefore, to obtain really new results it is necessary to turn to the fol- 
lowing fourth approximation. Following highly awkward calculations, as an asymptotic solv- 
ability condition one obtains the following evolution equation in the function %0(x, t): 

O(Po d2*o O~q)o ( O(Do )e 02(Do 
at + A - - +  B + C --0. (23) 

Ox 2 Ox ~ , ~  dx ~ 
where A, B, C are expressed in terms of the similarity parameters X, ~, j in terms of equa- 
tions not provided here. An equation of type (23) was encountered earlier in problems of 
Benard convection in an almost isolated fluid layer [9-11]. 

Thus, for R > R, Kolmogorov flow loses its stability. In the case of low supercritical- 
ity, R - R, ~ i, a longitudinal vortex structure is generated with characteristic sizes x ~ 
(R - R,)-I/2, y ~ 1 and characteristic evolution time t ~ (R - R,) -2 [all this follows di- 
rectly from (6), (7)]. Within the main approximation this large-scale vortex structure has 
the form (13), and it evolves according to Eq. (23). 

We now discuss the issue of possible experimental realization of the flow considered. 
In the case of a Newtonian fluid such an experiment was undertaken in [14]: a thin electro- 
lytic layer was placed in an external constant magnetic field with a periodic vertical compo- 
nent Hz, so that the role of the external force was played by the Lorentz force [H • j]. 
Strictly speaking, for the theoretical description it is necessary to take into account the 
fluid interaction with the container (such as adhesion to the walls), as well as the three- 
dimensionality of the flow realized. Nevertheless, the authors of [14] preferred to assume 
that the flow was primarily two-dimensional, not accounting for the true boundary conditions, 
but modifying the equations themselves by supplementing the Navier-Stokes equations by terms 
proportional to the velocity components u and v, respectively, and assigning a number to ac- 
count for friction with the bottom of the vessel. It is particularly simple to smooth out 
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the modified Navier-Stokes equation in the form of a Helmholtz equation [i.e., in the form 
(i) with k = 0]: the term Ai~ in the right-hand side must be replaced by Ai~ - aA~. 

We assume that this hypothesis is also valid in the case of a micropolar fluid. In this 
case all our considerations, starting with (7), remain valid if the friction coefficient with 
the container walls a is a fourth order quantity a = ~e ~, ~ = O(I). Equation (8) is slightly 
modified in this case [the term ~e~(~yy + ei~xx ) appears inside the square brackets in the 
right-hand side of (8)]. The solvability condition (i0) is also modified somewhat - the 
right-hand side is supplemented by the term 

1 - -  8 2 2a 

Obviously, all results up to the third approximation, inclusive, are retained. In particular, 
R, is primarily described by relation (22). Though the fourth approximation is changed with 
account of friction, from the solvability condition it can be concluded that a nontrivial 
new contribution is provided only by the additional term noted above. As a result we obtain, 
instead of (23), the following modified evolution equation 

O~o 02~o O~d)o / O~o ~2 a2~o ~ ~o 0 (24)  O--~+ A + B + c  = 

with the former constants A, B, C. 

Adding the new term to (23) leads to a qualitative change in the properties of the solu- 
tion ~0(x, t). In fact, we state the problem of possible polynomial integral equations (23), 
(24). A useful criterion of existence of such integrals, recently obtained in [15], shows 
that for Eq. (23) there exists a unique polynomial integral 

I =  ~ ~o (X, t) dx, 

while for Eq. (24) there exist no such integrals for ~ ~ 0. 

Stability of Arbitrary Unidirectional Periodic Flow. Consider unidirectional flow of an 
incompressible micropolar fluid, induced by an arbitrary, sufficiently smooth force which is 
periodic in one of the coordinates. This generalized Kolmogorov flow 

= :(Y), a = ~gtV) (25) 

can  a l s o  be  i n v e s t i g a t e d  f o r  s t a b i l i t y .  A l l  v a r i a b l e s  a r e  a g a i n  a s sumed  t o  be  d i m e n s i o n l e s s ,  
and t h e  p e r i o d  o f  t h e  f u n c t i o n s  f and g i s  t a k e n  e q u a l  t o  2~ ( t h i s  can  a l w a y s  be  added  due 
t o  t h e  s e l e c t i o n  o f  l e n g t h  u n i t s ) .  S i n c e  t h e  c u r r e n t  f u n c t i o n  was d e t e r m i n e d  a c c u r a t e l y  
w i t h i n  an a r b i t r a r y  a d d i t i v e  c o n s t a n t ,  we assume  t h a t  

2 ~  

<[>_~ 1 ( f (y)dg=O. 
2~ b 

S u b s t i t u t i n g  (25)  i n t o  t h e  d i m e n s i o n l e s s  e q u a t i o n s  ( 1 ) ,  ( 2 ) ,  we f i n d  t h e  v a l u e  o f  t h e  
force F and the relation between the functions f and g: 

F -  R1 \( dr' d~f + )oz chfi d2g ) ' lz dg ~ dzg = 2s q- dzfcly---- U (26)  

Thus ,  t h e  p e r i o d i c  f l o w  (25)  i s  d e s c r i b e d  by a s i n g l e  smooth  p e r i o d i c  f u n c t i o n ,  f o r  
example f(y), while the second function is determined from (26). The explicit relation be- 
tween the functions f and g becomes particularly obvious after expanding them in Fourier 
series: 

f = a~e , g =  b~e ik~, bh--  / i k Z + 2  ~ ah, (27)  

where the prime in the summation indicates absence of the term with k = 0. 

The stability of the flow (25), (26) is investigated by the method described in detail 
in the preceding sections. Following transition to the deformed coordinates, instead of (8) 
we obtain the equation 

~ O__AII~+ ~ -- A ~  + %A~ \ dY ~ , 
Ot O(x, F) R.  dg z 
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where 5 = ~2/8y2 + g232/Sx2. 

In the vanishing approximation we find 

% - f (Ss) 4- (I)o (x, t), 
o,) = kg (g), 

so that the solvability condition is automatically satisfied, 
rather simply from (26)], and consequently: 

2x 

The remaining equations (9), (I0) retain their previous shape. 

s i n c e  <g> = 0 

(29a) 

(296) 

[this follows 

Within the first approximation the equations 

Oy '~ Oy a 

l ~ Oa(hOg ~ %(20, 4- V)O~'! ' ' 

show that the solution must be sought in the form 

R~ d'~f c) q=)o 
'" dy:; Ox ' 

= - - ; < R ,  [ dg 
dg 

O(Po 
Ox 

30a)  

30b) 

O(P~, < r (x, t), 31a) ~l'~ = - - R .  f~ (g) Ox ' 

d~ == ~ R, ~~ (y) 0~--2-~ (3] .b)  
Ox 

Substitution of (31) into (30) leads to a system of two linear ordinary differential 
equations in the functions fl and g1: 

d~/~ ~2 d ~  _ d:~f , d2f~ 4-, 2 ) ,g~- . - [2  d~6~ _ / d6 ( 32 )  

The periodicity requirement of the functions f~ and gl as well as the assumption <f~> = 
0 [this restriction does not restrict generality: the general case <fz> r 0 reduces to that 
assumed after elementary renormalization of r as follows from (31a)] makes it possible to 
determine uniquely the solution of system (32). This solution can be obtained explicitly by 
means of Fourier series expansions: 

e~hY 

i~Za~Z) . . . . .  ?o2b(kl) - -  i k G ,  b(~ ~) = ik  (]G 4 .  al,)([aka 4. 2% - -  }~a)-~. 

(33)  

The solvability conditions (17) and (18) are again automatically satisfied, since all 
integrals in (17), (18) are trivial at the solutions (29), (31). 

In the second approximation we find from (28), (9) with account of (29), (31) 

_ 8d), d3f ,, Oad)o [ d3f 
Og ~ 8y  ~ " Ox dy :~ 8x~ L dy  :~ 

_ { df t(  a'~f, ']i ,, (o,'l,o ~*/  c;,f, < dj ] t  ; + -gT,--] [ <sj,, J' 

@2 &,2 k ~"C-E- dy 

(34a) 

dx  d!/ ~ Ox ) ' dg ] 

It is not difficult to find an explicit periodic solution of (34), which is quite awkward. 
In fact, to obtain the principal result - determination of the critical number R, - not all 
the second approximation results are required. Indeed, in the second approximation the 
asymptotic solvability condition (10a) is 
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+ J'-' - o o'I" (35)  

so that it is necessary to calculate only the integral from 02 to the period. It is deter- 
mined by direct integration of (34b) over the period. A number of terms, such as 32@2/~y 2, 
drop out following integration due to periodicity 

8~o  o. Oz~o dg df \ 
-~ R ~ / -  <11 -- gl (36) '2 < ~2 > § ax = ax ~ @ @ / 

The remaining i n t e g r a l s  in (35) a re  c a l c u l a t e d  by the  p rev ious  approximat ions  (29) ,  (31):  

\ Og Ox ~ / \ Og Ox 2 / Ox ~ \ dy 
(37) 

< ~o>-- r  

Substituting (36), (37) into (35), we reach the required expression for the critical 
Reynolds number R, of stability loss: 

R. = ~  2 - - ~  (38) 
" 2 < ' /  dr, \ f~ / @ ) p h i < g ,  df d g \  

@ @ 

Equat ion  (38) provides  an e x p l i c i t  e x p r e s s i o n  f o r  t he  c r i t i c a l  number of a whole c l a s s  
of p e r i o d i c  f lows of a mic ropo la r  f l u i d .  In the  s p e c i a l  case  f = cos y (38) t r ans fo rms  to  
the  p rev ious  r e s u l t  (22).  The c o n c l u s i o n s  drawn in the  t h i r d  s e c t i o n  concern ing  s t a b i l i t y  
of a Kolmogorov flow are  a l s o  v a l i d  fo r  a r b i t r a r y  p e r i o d i c  f lows of shape (25) .  In p a r t i c u -  
l a r ,  the stability of an arbitrary flow ~ = f(y) is enhanced with increasing i. In the 
most realistic case ~2 ~ j ~ i, neglecting terms O(j, ~2) and redefining the Reynolds number 
as was described in the third section, from (38) we obtain the expression 

Re,-=. l - -h /2  (<f2>)-,/2 
1--~ 

fromwhich the consequence of enhanced stability becomes quite obvious. 

NOTATION 

~, angular velocity of microrotation; o, nontrivial component of angular velocity of 
microrotation; F, external force; x, y, Cartesian coordinates; ~, stream function; t, time; 
p, mass density; pJ, micromoment of inertia density; ~, dynamic viscosity coefficient; k, 
"adhesion" coefficient; y, rotational viscosity coefficient; U, a characteristic velocity; 
a, a characteristic size (flow period); E, Reynolds number; X, K, j, dimensionless para- 
meters defined by Eq. (5); R,, critical Reynolds number; g, a small parameter defined by 
Eq. (6); ~, stream perturbation function; A l, al, constants of (16); A 2, a2, B 2, b 2, c 2, 
constants of (21); H, magnetic,field intensity; I, a polynomial integral; f, g, generalized 
Kolmogorov flow; ak, ak, bk, bk, Fourier coefficients; and f1(Y), gz(Y), functions defined in 
(32). 
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